Research

My research spans Algebraic Topology, and applications of Topological Data Analysis to other disciplines.

In my doctoral thesis, I established decomposition theorems for topological Azumaya algebras, and for topological Azumaya algebras with involutions of the first kind.

Publications

2023

  1. arXiv
    Decomposition of symplectic vector bundles and Azumaya algebras
    Niny Arcila-Maya
    2023
    Accepted for publication after corrections at the Journal of Homology, Homotopy and Applications

2022

  1. arXiv
    Decomposition of topological Azumaya algebras with orthogonal involution
    Niny Arcila-Maya
    2022
    Accepted for publication after corrections at the Journal of Pure and Applied Algebra
  2. TA
    Compactly supported A1-Euler characteristic and the Hochschild complex
    Niny Arcila-Maya, Candace Bethea, Morgan Opie, Kirsten Wickelgren, and Inna Zakharevich
    Topology and its Applications, 2022
    Women in Topology III
  3. CMB
    Decomposition of topological Azumaya algebras
    Niny Arcila-Maya
    Canadian Mathematical Bulletin, 2022

2013

  1. NOOS
    Numerical solution of a wave-diffusion fractional differential equation
    Arcila Maya N., Acosta Medina C., and Trujillo Casanova S.
    Revista NOOS, 2013